
DTLS “ClientHello” Race Conditions in
WebRTC Implementations

Alfred Farrugia ‑ Chief Demolition Officer / Senior Researcher

Sandro Gauci ‑ Chief Mischief Officer / CEO

Enable Security GmbH

October 2024

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Abstract

This research uncovers a security flaw in WebRTC implementations, urging developers to enforce
stricter source verification for DTLS ClientHello packets to prevent denial of service attacks.

Introduction to WebRTC

Web Real‑Time Communication (WebRTC) is a technology that enables peer‑to‑peer communication
directly between web browsers or mobile applications. It facilitates real‑time audio, video, and data
sharing without plugins or external software and is considered the most secure open standard VoIP
protocol. WebRTCsupports secureandefficientmedia communicationby incorporating standardised
protocols and encryption methods, such as Datagram Transport Layer Security (DTLS) and Secure
Real‑time Transport Protocol (SRTP). Media traffic is typically transmitted using the User Datagram
Protocol (UDP) to ensure low‑latency communication.

In WebRTC, a securemedia session is initiated by a sequence of three events: initial signalling, media
consent verification, and DTLS handshake. These events are mostly abstracted from developers and
are typically managed by browser APIs, following the guidelines set in IETF’s RFC 8829 ‑ JavaScript
Session Establishment Protocol (JSEP)1.

During the initial signalling phase, the peer initiating aWebRTC session takes the first step by sending
anoffer to another peer, requesting amedia session to be established. If the targetedpeer accepts the
offer, an answer is sent back,marking the beginning of the communication. This offer‑and‑answer ex‑
change is typically carried out over HTTPS orWebSocket connections, using standard protocols (such
as SIP) or other proprietary protocols. Several important parameters are exchanged during the sig‑
nalling phase, which inform the subsequent two phases: ICE media consent verification and DTLS
handshake. For the problem explained in this paper, the following parameters are relevant for the
media consent verification phase: ICE candidates, ICE username fragment and ICE password. ICE
candidates, containing an IP address and port, are used to discover the possible network paths be‑
tweenWebRTCpeers. The ICE username fragment and the ICE password authenticatemessages used
during media consent verification. For the DTLS handshake, the following parameters are essential:
DTLS role and certificate fingerprint. The DTLS role is either “active” or “passive”; where the “active”
peer acts as a Client and sends the initial ClientHello while the “passive” peer acts as a Server
and expects this initialClientHello. The certificate fingerprint will be used later in the DTLS hand‑
shake to verify the validity of the client’s certificate and to create a cryptographic binding between
the exchanged information and the SDP.

Media consent verification uses the ICE candidate information to verify that both WebRTC peers can
(a) communicate with each other via a reliable path and (b) that the other party is the peer they claim
1https://datatracker.ietf.org/doc/html/rfc8829

Enable Security GmbH enablesecurity.com 1

https://datatracker.ietf.org/doc/html/rfc8829
https://datatracker.ietf.org/doc/html/rfc8829
https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

to be. The Interactive Connectivity Establishment protocol (ICE) uses Session Traversal Utilities for
NAT (STUN) messages, which contain a message integrity attribute calculated by the ICE username
fragments and ICEpasswordobtained in the signalling phase. This communication is typically carried
out over UDP using an ephemeral port.

Once this verification is complete, a DTLS handshake is performed over the network path established
during media consent verification. The DTLS handshake begins with the peer having the “active”
role, sending a ClientHello message with the proposed security parameters. The passive peer
respondswith aServerHellomessage, agreeing on parameters, followed by its certificate and key
exchange. The active peer verifies the passive peer’s identity and sends its key exchange message so
both parties can generate the session keys. Finally, both exchange “Finished” messages, confirming
the encryption setup and completing the secure connection. When the peers send their respective
certificates, the other peer validates that certificate against the certificate fingerprint sent during sig‑
nalling. The keyingmaterial generated by theDTLS handshake is then used for SRTP key derivation.

The following sequence diagram shows the flow of packets for setting up a secure media session be‑
tween two peers.

Enable Security GmbH enablesecurity.com 2

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Peer BPeer A

Peer BPeer A

Offer over signalling

Answer over signalling

ICE media consent verification request

ICE media consent verification response

DTLS Client Hello

DTLS Server Hello

DTLS Certificate

DTLS Server Key Exchange

DTLS Certificate Request

DTLS Server Hello Done

Certificate

DTLS Client Key Exchange

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Figure 1: Flow of packets for setting up a secure media session between two peers

Enable Security GmbH enablesecurity.com 3

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Peer A, the initiator, typically acts as a DTLS client, also known as an active DTLS role, by sending
ClientHello, while Peer B, the responder, take a DTLS server role, also known as a passive DTLS
role. Note that the role selection is unrelated towho sends the initial offer over signalling but is based
on values exchanged during signalling.

AlthoughWebRTC allows for direct peer‑to‑peer media connectivity between browsers, intermediary
signalling and media servers often handle traffic between peers. There are several reasons why We‑
bRTC services do this, including performance, network adaptability, recording, and NAT traversal. In‑
termediarymedia servers handle network communication by either using an ephemeral port for each
distinct media session or using one port to handle all the media sessions for all the peers.

The following sequence diagram shows the flow of packets when intermediary signalling and media
servers are used:

Enable Security GmbH enablesecurity.com 4

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Peer BMedia serverSignallingPeer A

Peer BMedia serverSignallingPeer A

par [Peer A & Media server]

[Peer B to Media server]

par [Peer A & Media server]

[Peer B & Media server]

Offer

Proxy offer

Answer

Proxy answer

ICE media consent verification request

ICE media consent verification response

ICE media consent verification request

ICE media consent verification response

DTLS Client Hello

DTLS Server Hello

DTLS Certificate

DTLS Server Key Exchange

DTLS Certificate Request

DTLS Server Hello Done

Certificate

DTLS Client Key Exchange

Certificate Verify

Change Cipher Spec

Finished

New Session Ticket

Change Cipher Spec

Finished

DTLS Client Hello

DTLS Server Hello

DTLS Certificate

DTLS Server Key Exchange

DTLS Certificate Request

DTLS Server Hello Done

Certificate

DTLS Client Key Exchange

Certificate Verify

Change Cipher Spec

Finished

New Session Ticket

Change Cipher Spec

Finished

Figure 2: Flow of packets when intermediary signalling andmedia servers are used

Enable Security GmbH enablesecurity.com 5

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

The impact of Denial of Service attacks onWebRTC

Denial of Service (DoS) attacks can significantly impact the reliability and performance of WebRTC
applications, leading to delayed or failed connections, unestablished media streams, or a poor user
experience. WebRTC systems can be affected by various types of DoS attacks, including volumetric
attacks that overwhelmnetwork capacity and targeted attacks that, while not volumetric, exploit spe‑
cific vulnerabilities to cause service disruptions. The issue described in this paper falls into the latter
category.

The issue explained

Our research has identified a gap between the media consent verification and the DTLS hand‑
shake phase. The communication takes place over UDP, which does not inherently verify the
authenticity of the packet’s source unless additional checks are implemented at the application
layer. This means that an adversary can send a malicious DTLS ClientHello message from any
IP address to the expected port, potentially causing a “network race condition” if the malicious
message is processed before the legitimate one. Several implementations were found to act this
way, assuming the packet’s source is legitimate. This often results in a Denial of Service, espe‑
cially when the malicious ClientHello message contains a list of insecure cipher‑suites like
TLS_NULL_WITH_NULL_NULL.

Enable Security GmbH enablesecurity.com 6

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

}Media Server

Ports

25000

25001

49998

49999

Victim 1

Victim 2

Attacker
0ms1ms2ms3ms

Figure 3: This diagram illustrates a network race condition scenario between legitimate and
malicious packets arriving at a media server. The red arrows represent the attacker’s packets, while
the green arrows represent legitimate traffic from victims. The x‑axis quantifies time in milliseconds
(ms), showing when packets reach the server ports. The media server ports range from 25000 to
49999. The attacker’s packets arrive earlier (closer to 0ms on the x‑axis), indicating that they reach
the server before the legitimate traffic, which arrives later at 0.5ms. This timing discrepancy
highlights a race condition where the attacker’s packets potentially exploit vulnerabilities by arriving
first, disrupting or taking priority over the legitimate traffic from the victims. The diagram effectively
shows how the attacker can gain an advantage by manipulating packet arrival times.

The study observed different behaviours when testing various open‑source and proprietary WebRTC
solutions. In some cases, a message sent over signalling terminates the WebRTC session. In other
instances, a DTLS Alert is sent to the peer, ending the media stream without necessarily updating
the session state over signalling. This might lead to an undefined application state where the peer
incorrectly believes the call is ongoing while the media communication has failed.

This issue does not affectmedia servers or peers that use a static port since, by design, these systems
will check the source of the packets. Interestingly, our research found issues in several media servers
but not in Web Browsers.

Enable Security GmbH enablesecurity.com 7

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Special case: when no ICE candidates are used

It is worth noting that in VoIP media sessions, which are not WebRTC media sessions, there may be
no ICE candidates during the signalling phase. In such cases, media consent verification is skipped.
This configuration canmake themedia server vulnerable to receivingmalicious DTLSClientHello
messageson theport expecting legitimate traffic. This behavior hasbeenobserved in solutionswhere
media consent verification is not mandatory and the media session relies on DTLS‑SRTP.

Related work

TheRFC8826 ‑ “Security Considerations forWebRTC”, section4.2 ‑ “CommunicationsConsent Verifica‑
tion” highlights the importance of the ICE handshake, referring to presumption of malicious traffic:

It is important to rememberhere that the site initiating ICE ispresumedmalicious; inorder for the
handshake to be secure, the receiving element MUST demonstrate receipt/knowledge of some
value not available to the site (thus preventing the site from forging responses).

RFC 8827 ‑ “WebRTC Security Architecture”, section 4.2, also describes the use of ICE for media con‑
sent verification, which ensures that both peers are willing and able to exchange media. Section 4.3
discusses the DTLS handshake, highlighting the sequence dependency between ICE completion and
the DTLS handshake.

However, theseRFCsdonot specifically address the checkon the sourceof theDTLSClientHello’s
message.

Methodology

To test our hypothesis, we tested against open‑source and proprietary WebRTC implementations in
the form of media servers. The initial tests were conducted against open‑source projects using SIP
as their signalling protocol. We implemented two simple Golang programs, one acting as the peer
(using SIP protocol) while the other acts as an attacker. These two tools interacted with each other to
simulate an attacker’s ClientHello being processed before the legitimate peer’s ClientHello.
The target media server under test was set to auto‑answer incoming offers to facilitate testing. The
following steps were performed:

1. TheSIPclient sentanofferoverWebSocket to initiateamedia session, including ICEparameters,
DTLS role (set to active) and DTLS Certificate fingerprint

2. The target answered the offer
3. Media consent verification was performed

Enable Security GmbH enablesecurity.com 8

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

4. The SIP client sent a message to the attack tool with the details of where the DTLS
ClientHellowas expected

5. The attack tool started to send a DTLS ClientHello with the list of cipher‑suites set to
TLS_NULL_WITH_NULL_NULL to the target every 10ms

6. The SIP client sent a DTLSClientHellomessage to the target, including a valid list of cipher‑
suites

These steps reproduced the vulnerability described in this paper, in a controlledmanner. Another test
was performed by continuously sending a DTLS ClientHello against a port range on the target
media server. This test proved that the issue can be abused in thewild and not just in a controlled lab
environment.

However, these tools were not sufficient for testing proprietary and cloud implementations. These
solutions use custom and complex signalling protocols, and conducting tests that could cause a de‑
nial of service on production systems is risky. To test these systems safely and efficiently, we mod‑
ified the Chromium browser to notify the attack tool with the remote peer’s ICE candidates just be‑
fore it sends its DTLS ClientHello message. Specifically, we patched the JsepTransport::
AddRemoteCandidates function to send a POST request to the attack tool. The attack tool would
then begin to send the malicious DTLS ClientHello before the browser does, targeting only the
media port assigned to the media session under test. This way, other users of the system under test
were not affected.

Case Studies

In this section, we present case studies of various software and platforms to highlight different behav‑
iors and scenarios. Each case study focuses on a specific software or platform to illustrate the diverse
behaviors and scenarios that can occur in systems found to be vulnerable to this security issue.

WebRTCMedia Sessions with ICE where signalling and a DTLS Alert message terminate the
Media Session

This behavior was observedwhen testing Asterisk, an open‑source software PBX used tomanage and
control telephone calls between traditional phone sets, PSTN destinations, and VoIP network devices
or services. The tested versions of Asterisk were 18.20.0, 20.5.0 and 21.0.0, all vulnerable to this issue.
Signalling between the peer and the Asterisk server was performed over secure WebSocket using the
SIP protocol. Media consent verification was performed as soon as the peer received the server’s an‑
swer. This was followed by a ClientHellomessage sent from amalicious actor, i.e., an IP and port
different from the one used in the media consent verification phase. The call was immediately termi‑

Enable Security GmbH enablesecurity.com 9

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

nated: the peer received a SIP BYE message from the Asterisk server, with the Reason header set to
“Q.850;cause=0”, and a DTLS Alert message terminating the DTLS handshake.

AttackerAsteriskCaller

AttackerAsteriskCaller

SIP INVITE

SIP 100 Trying

SIP 200 OK

SIP ACK

STUN Binding Request

STUN Binding Success Response

DTLS Client Hello

DTLS Alert

SIP BYE Q.850 cause=0

Figure 4:WebRTC Media Sessions with ICE where signalling and a DTLS Alert message terminate the
Media Session

WebRTCMedia Sessions with ICEwhere neither signalling nor a DTLS alert message terminates
the Media Session

This behaviour was observed when testing RTPEngine, a proxy for RTP traffic and other UDP based
media traffic. The tested version of RTPEnginewasmr11.5.1.6, whichwas vulnerable to this issue. For
testing, the signallingwas handled by a Kamailio server. Media consent verificationwas performed as
soon as the peer received the server’s answer. This was followed by a ClientHellomessage sent
fromamaliciousactor, i.e., an IPandportdifferent fromtheoneused in themedia consent verification
phase. An errorwas immediately reported in theRTPEngine logs. However, the peer receivednoDTLS

Enable Security GmbH enablesecurity.com 10

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

alert or signalling messages, leaving the call in an undefined state.

AttackerRTPEngineKamailioCaller

AttackerRTPEngineKamailioCaller

SIP INVITE

rtpengine_manage()

STUN Binding Request

STUN Binding Response

DTLS Client Hello

Figure 5:WebRTC Media Sessions with ICE where neither signalling nor a DTLS alert message
terminates the Media Session

The following log shows that RTPEngine resets the DTLS connection context:

1 DEBUG: [... port 39910]: [srtp] Processing incoming DTLS packet
2 ERR: [... port 39910]: [crypto] DTLS error: 1 (no shared cipher)
3 ERR: [... port 39910]: [srtp] DTLS error on local port 39910
4 DEBUG: [... port 39910]: [crypto] Resetting DTLS connection context

VoIP Media Sessions without ICE for DTLS‑SRTP encrypted calls

This behaviour was observed when testing FreeSWITCH, an open‑source telephony software for real‑
time communication protocols using audio, video, text and other forms of media. It was found to be
vulnerable to this issue, evenwhenno ICE candidateswerepresent. The tested versionof FreeSWITCH
was 1.10.10. Signalling between the peer and the FreeSWITCH server was performed over secure
WebSocket using the SIP protocol. When the peer received the server’s answer, a ClientHello
message was sent from a malicious actor, i.e., an IP and port different from the one specified in the
signalling phase. The call was immediately terminated: the peer received a SIP BYEmessage from the
FreeSWITCH server, with the Reason header set to “Q.850;cause=27”, and a DTLS Alert message
terminating the DTLS handshake.

Enable Security GmbH enablesecurity.com 11

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

AttackerFreeSWITCHCaller

AttackerFreeSWITCHCaller

SIP INVITE

SIP 100 Trying

SIP 200 OK

SIP ACK

DTLS Client Hello

DTLS Alert

SIP BYE Q.850 cause=27

Figure 6: VoIP Media Sessions without ICE for DTLS‑SRTP encrypted calls

WebRTCMedia Sessions with ICE whenmaking PSTN Calls

This behavior was observed when testing Skype, a telecommunications application operated by
Skype Technologies, a division of Microsoft. While the platform was generally resilient against this
attack during calls between Skype users, vulnerabilities were identified under specific circumstances.
Reproducing this issue between two Skype users using the web client proved to be challenging, as
peer‑to‑peer communication was typically chosen as the nominated candidate pair, which was not
susceptible to the attack.

However, the vulnerabilitywas successfully exploitedwhenusers engaged in calls fromSkype toPSTN
or when using the “Skype Test Call” service (echo123). The media servers handling these calls were
found to be vulnerable to this issue as of July 2024. Specifically, the vulnerability was confirmed in
two scenarios:

1. When the victim user placed a call to a mobile number (PSTN).
2. When the victim user initiated a call to the “Skype Test Call” service (echo123).

Enable Security GmbH enablesecurity.com 12

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

During the attack, the calls failed to establish correctly, with neither DTLS Alert messages nor any
visual indications of an error appearing in the user interface.

AttackerSkypeMediaServerCaller

AttackerSkypeMediaServerCaller

Connecting

Ringing

Call established

DTLS Client Hello

DTLS Client Hello

DTLS Client Hello

Figure 7:WebRTC Media Sessions with ICE whenmaking PSTN Calls

In both scenarios, the vulnerability did not produce explicit alerts or errormessages for the user, leav‑
ing the issue undetected during the active call session.

Results

The following list shows several open‑source andproprietary solutions affected by this issue and their
behaviour during attack.

Product
Signalling
Disconnects

Receives
DTLS Alert

Asterisk (<=18.20.0, <=20.5.0, <=21.0.0) ✓ ✓
FreeSWITCH (<=1.10.10) ✓ ✓

Enable Security GmbH enablesecurity.com 13

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

Product
Signalling
Disconnects

Receives
DTLS Alert

RTPEngine (<mr12.1.1.2, <mr12.0.1.3, <mr11.5.1.16, <mr10.5.6.3,
<mr10.5.6.2, <mr9.5.8.2, <mr8.5.12.2)

× ×

Skype × ×

During testing, we also examined solutions that were not susceptible to this vulnerability. Many of
these solutions treated ICE (Interactive Connectivity Establishment) as a transport mechanism. The
table below outlines various factors implemented by both open‑source and proprietary solutions to
prevent this vulnerability. Thesemeasures were observed in systems that were found to be secure at
the time of testing.

Product Peer is in active mode
Non‑ephemeral
port

Janus ✓ ×
Discord Service Voice channel ✓ ×
Dolby.io Live Broadcast ✓ ×
Facebook Messanger web client ✓ ×
Google Meet ✓ ✓
LiveKit Meet 2 × ✓
Webex Meetings ✓ ✓
Zoho Meeting × ×
Zoom personal roommeeting ✓ ✓
Mediasoup ✓ ✓

Discussion

The behaviour discussed in this paper does not imply that a bug exists in the WebRTC specification.
However, it highlights a gap that multiple implementors have failed to identify: checking the origin
of the DTLSClientHello. Since these protocols are used in real‑time communication services, dis‑
ruption in media sessions leading to denial of service should be considered critical.
2only DataChannel is set to active

Enable Security GmbH enablesecurity.com 14

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

When ICE candidates are present, the solution to this problem should be simple: ensure that the
source of the DTLS ClientHello packet is the same as the one used during the media consent
verification phase. However, solutions might be harder to implement when no ICE candidates are
present. One potential solution is to match the source of the DTLS ClientHello packet with the
information exchanged during signalling.

During our research, it became evident that although RFC 8826 and RFC 8827 refer to performing
checks on themedia traffic, it is not clear that theDTLSClientHellomessage should be processed
only if its sourcematches the selected ICE candidate pair. We recommend that future RFC updates in‑
clude a specific check for the source of the DTLS ClientHello.

Through discussions with key figures in theWebRTC community3, it became evident that a core issue
behind the vulnerability described in this paper appears related to a narrow interpretation of “media”
in WebRTC contexts. A common assumption, particularly among those with a VoIP background, is
that media refers exclusively to RTP. RFC 8445, section 12.2, “Receiving Data,” focuses on RTP and
RTCP verification, which can lead to the mistaken belief that other protocols, such as DTLS and SCTP,
are not subject to ICE verification. This ambiguity around the handling of non‑RTP media can result
in the assumption that ICE only governs RTP and RTCP. The absence of explicit guidance for DTLS and
other protocols in media contexts has contributed to the view that DTLS falls outside the scope of
ICE‑verified media.

Conclusion

The findings of this study underscore a security vulnerability in current WebRTC implementations,
specifically the gap betweenmedia consent verification and the DTLS handshake phase. This vulner‑
ability, primarily arising fromUDP’s lack of inherent packet source verification, poses a significant risk
of disruption and denial of service in real‑time communication services. Specifically, it is to be found
when a WebRTC implementation treats ICE only as an initial consent mechanism, whereas when a
WebRTC implementation threats ICE as a transport mechanism, this security issue is mitigated by de‑
sign.

To mitigate this vulnerability, developers must implement stricter checks on the source of DTLS
ClientHello packets, ensuring they match the verified ICE candidate. This additional layer of
verification is crucial in preventing malicious actors from exploiting this gap. Alternative verification
mechanisms based on signalling information should be developed and integrated for scenarios
where ICE candidates are not present.

The observed inconsistencies in behaviour among different WebRTC solutions highlight the need for

3https://www.enablesecurity.com/newsletter/2024‑06‑rtcsec‑news/#heated‑debate‑on‑whether‑the‑webrtc‑specs‑
contain‑a‑vulnerability

Enable Security GmbH enablesecurity.com 15

https://www.enablesecurity.com/newsletter/2024-06-rtcsec-news/#heated-debate-on-whether-the-webrtc-specs-contain-a-vulnerability
https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

a unified approach to address this issue. Industry‑wide collaboration and adherence to updated stan‑
dards can facilitate the adoption of these essential securitymeasures. Including explicit guidelines in
future RFC 8826 and RFC 8827 updates will provide clear directives for developers, ensuring compre‑
hensive protection across all implementations.

Thanks

The authors would like to express their sincere gratitude to Iñaki Baz Castillo, Richard Fuchs, Philipp
Hancke, Dan Jenkins, Olle E (oej) Johansson, Tsahi Levent‑Levi, Lorenzo Miniero, Nils Ohlmeier, Tim
Panton, Torrey Searle, Dr. Ing. Dorgham Sisalem and Markus Toepfer for their invaluable contribu‑
tions to this white paper. Their expertise, insights, and dedication were instrumental in shaping the
content and ensuring its accuracy and relevance. We are deeply appreciative of their time, effort, and
unwavering support throughout the development of this white paper.

About Enable Security

Enable Security is a dedicated team of security researchers specializing in Real‑Time Communication
(RTC) security. We are driven by the belief that communication is a fundamental human right, and by
securing it, we empower people to communicate freely without fear or constraint.

Our passion for RTC security stems from two core principles: the importance of protected communi‑
cation in today’s digital world and our love for tackling complex challenges. We approach our work
with a combination of expertise, curiosity, and a commitment to continuous learning.

At Enable Security, we pride ourselves on:

1. Delivering high‑quality, valuable results throughmeticulous research and analysis
2. Fostering a culture of constant learning and knowledge sharing within the security community
3. Maintaining honesty and transparency in our assessments and communications
4. Being approachable and collaborative, working seamlessly with colleagues, clients, and the

broader security ecosystem

Our team is composed of friendly, passionate professionals who are always eager to engagewith new
ideas and challenges. We believe in the power of teamwork and open dialogue to drive innovation
and improve security practices across the RTC landscape.

By choosing Enable Security, you’re partnering with a group of dedicated experts who are committed
to advancing the field of RTC security and protecting the fundamental human need for safe, secure
communication.

Enable Security GmbH enablesecurity.com 16

https://www.enablesecurity.com


DTLS “ClientHello” Race Conditions in WebRTC Implementations October 2024

RTCSec Newsletter

Stay informedwith theRTCSecnewsletter, a freeperiodicpublication thatdelivers insightful commen‑
tary and news on VoIP and WebRTC security. We cover both defensive and offensive security aspects
related to Real‑time Communications. Subscribe now to stay ahead in the field: RTCSec Newsletter
Subscription4. You can also read it online: RTCSec Newsletter Online5.

References

Alvestrand, Harald T. “RFC 8825: Overview: Real‑TimeProtocols for Browser‑BasedApplications.” IETF
Datatracker, 2021, datatracker.ietf.org/doc/html/rfc8825. Accessed 6 Sept. 2024.

Ari Keränen, et al. “RFC 8445: Interactive Connectivity Establishment (ICE): A Protocol for Network Ad‑
dress Translator (NAT) Traversal.” IETF Datatracker, 2018, datatracker.ietf.org/doc/html/rfc8445. Ac‑
cessed 6 Sept. 2024.

Enable Security. “Asterisk Susceptible to Denial of Service via DTLS Hello Packets during Call Initi‑
ation.” GitHub, 15 Dec. 2023, github.com/EnableSecurity/advisories/tree/master/ES2023‑01‑asterisk‑
dtls‑hello‑race. Accessed 6 Sept. 2024.

—. “FreeSWITCHSusceptible to Denial of Service via DTLSHello Packets during Call Initiation.”GitHub,
22 Dec. 2023, github.com/EnableSecurity/advisories/tree/master/ES2023‑02‑freeswitch‑dtls‑hello‑
race. Accessed 6 Sept. 2024.

—. “RTPEngine Susceptible to Denial of Service via DTLS Hello Packets during Call Initiation.” GitHub,
15 Dec. 2023, github.com/EnableSecurity/advisories/tree/master/ES2023‑03‑rtpengine‑dtls‑hello‑
race. Accessed 6 Sept. 2024.

McGrew, David, and Eric Rescorla. “RFC 5764: Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real‑Time Transport Protocol (SRTP).” IETF Datatracker, 2024, data‑
tracker.ietf.org/doc/html/rfc5764. Accessed 6 Sept. 2024.

Mozilla. “WebRTCAPI.”MDNWebDocs, 4Oct. 2019, developer.mozilla.org/en‑US/docs/Web/API/WebRTC_API.

Rescorla, Eric. “RFC 8826: Security Considerations for WebRTC.” IETF Datatracker, 2021, data‑
tracker.ietf.org/doc/html/rfc8826. Accessed 6 Sept. 2024.

—. “RFC8827: WebRTCSecurityArchitecture.” IETFDatatracker, 2021, datatracker.ietf.org/doc/html/rfc8827.
Accessed 6 Sept. 2024.

4https://www.enablesecurity.com/subscribe/
5https://www.enablesecurity.com/newsletter/

Enable Security GmbH enablesecurity.com 17

https://www.enablesecurity.com/subscribe/
https://www.enablesecurity.com/subscribe/
https://www.enablesecurity.com/newsletter/
https://datatracker.ietf.org/doc/html/rfc8825
https://datatracker.ietf.org/doc/html/rfc8445
https://github.com/EnableSecurity/advisories/tree/master/ES2023-01-asterisk-dtls-hello-race
https://github.com/EnableSecurity/advisories/tree/master/ES2023-01-asterisk-dtls-hello-race
https://github.com/EnableSecurity/advisories/tree/master/ES2023-02-freeswitch-dtls-hello-race
https://github.com/EnableSecurity/advisories/tree/master/ES2023-02-freeswitch-dtls-hello-race
https://github.com/EnableSecurity/advisories/tree/master/ES2023-03-rtpengine-dtls-hello-race
https://github.com/EnableSecurity/advisories/tree/master/ES2023-03-rtpengine-dtls-hello-race
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5764
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API
https://datatracker.ietf.org/doc/html/rfc8826
https://datatracker.ietf.org/doc/html/rfc8826
https://datatracker.ietf.org/doc/html/rfc8827
https://www.enablesecurity.com

	Abstract
	Introduction to WebRTC
	The impact of Denial of Service attacks on WebRTC
	The issue explained
	Special case: when no ICE candidates are used
	Related work
	Methodology
	Case Studies
	WebRTC Media Sessions with ICE where signalling and a DTLS Alert message terminate the Media Session
	WebRTC Media Sessions with ICE where neither signalling nor a DTLS alert message terminates the Media Session
	VoIP Media Sessions without ICE for DTLS-SRTP encrypted calls
	WebRTC Media Sessions with ICE when making PSTN Calls

	Results
	Discussion
	Conclusion
	Thanks
	About Enable Security
	RTCSec Newsletter
	References

