
HAL Id: inria-00404837
https://hal.inria.fr/inria-00404837

Submitted on 17 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VoIP Malware: Attack Tool & Attack Scenarios
Mohamed Nassar, Radu State, Olivier Festor

To cite this version:
Mohamed Nassar, Radu State, Olivier Festor. VoIP Malware: Attack Tool & Attack Scenarios. IEEE
ICC 09, IEEE, Jun 2009, Dresden, Germany. pp.1-6. �inria-00404837�

https://hal.inria.fr/inria-00404837
https://hal.archives-ouvertes.fr

VoIP Malware: Attack Tool & Attack Scenarios

Mohamed Nassar, Radu State, Olivier Festor

Centre de Recherche INRIA Nancy - Grand Est

615, rue du jardin botanique, 54602

Villers-Lès-Nancy, France

{nassar|state|festor}@loria.fr

Abstract— With the appearance of new Internet services like
Voice over IP and IP television, malwares are in the way to update
and extend their targets. In this paper, we discuss the emergence
of a new generation of malwares attacking VoIP infrastructures
and services. Such malwares constitute a real threat to the
currently deployed VoIP architectures without strong security
measures in place. We present one implemented environment that
can be used to evaluate such attacks. Our “VoIP bots” support
a wide set of attacks ranging from SPIT to DDoS and are tested
against several VoIP platforms.

I. INTRODUCTION

Malware is the general term grouping softwares designed

to infiltrate or damage a computer system without the owner’s

informed consent. A worm is a special type of malware that

can run on its own and propagate itself to other machines. An

attacker using worms and other infection mechanisms to install

bots on vulnerable machines is called bot herder or bot master.

Upon their bootstrap, the compromised machines or Zombies

connect themselves to their master to receive command input

and execute attack operations. In many scenarios, the bot

master rents time on the botnet (network of bots under a com-

mon control infrastructure) to a third party which orientates

them to launch Distributed Denial of Service Attacks (DDoS)

and massive SPAM. Botnets pose a severe threat to today’s

Internet. Over the recent years, botnets have become a popular

and profitable market. Since April 2007 when the government

and private web servers in Estonia were the target of a large

DDoS, “cyberwar” is no more science fiction.

With the growing of new Internet technologies like VoIP,

it is expected that botnets will play the same malicious role.

VoIP services are well exposed to such threats since they are

open and have to be reachable. Values of interest within a VoIP

enterprise domain include signaling and media infrastructure,

accounting directories, PBX services (voice mailboxes, gate-

ways), individual user accounts, the internal networks running

other services. Attacks can be transmitted across gateways

to integrated networks like mobile and traditional telephony

ones. Conversely, compromising VoIP applications constitutes

a bridge to bypass security mechanisms and attack internal

networks. Currently, some researchers argue that SKYPE -

which is the most deployed peer to peer VoIP application-

could be a backdoor [1]. SIP (Session Initiation Protocol -

RFC 3261) -which is the de-facto standard signaling protocol-

is a strong candidate to become the UFBP (Universal Firewall

Bypass Protocol) or the universal payload injector. This is as-

Fig. 1. VoIP Botnet Framework

sessed after the discovery of many cross-site scripting (XSS)1

and SQL injection attacks2 due to SIP vulnerabilities. To be

effective however, these vulnerabilities have to be exploited

over a large distributed framework. A botnet seems perfectly

adequate for this task.

In this paper, we present such a framework of VoIP bot

and botnet in the context of SIP. Our bots are not equipped

with propagation mechanisms so they don’t represent a real

threat value; rather than being used for research purposes. The

overlay network of our framework is depicted in Figure 1.

The rest of the paper is organized as follow: In Section II we

introduce the SIP protocol. We illustrate our bot architecture in

Section III and we enumerate many attack scenarios in Section

IV. We discuss implementation issues in Section V. In Section

VI we debate the related work and we conclude the paper in

Section VII.

II. SIP BACKGROUND

SIP is emerging as the future standard for Internet telephony

signaling because of the following strength points [2]:

• SIP is professionally developed by the IETF (Internet

Engineering Task Force) to be scalable over Internet and

utilizing Internet standards and capabilities (e.g. DNS,

URL support, Wireless);

• SIP is text based with heritage from HTTP and SMTP,

so it can be easily scripted, logged and inspected;

1http://seclists.org/fulldisclosure/2007/Oct/0174.

html
2http://voipsa.org/pipermail/voipsec_voipsa.org/

2007-October/002466.html

Fig. 2. SIP Call Establishment

Fig. 3. VoIP Bot Architecture

• SIP has presence and instance messaging capabilities

presenting a high potential to invent new applications in

the future;

• SIP is well supported by the industry: it has been adopted

by mobile operators in their third generation networks and

services;

• SIP takes advantage of Internet security mechanisms

as encryption, authentication, integrity and certificates,

even if it inherits a large set of vulnerabilities from the

underlying data networks from another side.

Basically, SIP allows two communicating parties to set

up, modify and terminate a phone call. SIP is a request-

response transaction-based protocol. A SIP Dialog is com-

posed of one or more transactions. The SIP addressing

scheme is based on URIs (Uniform Resource Identifier)

e.g. sip:user@host:port;parameters. Proxy servers

help routing SIP messages. A basic call initiation scenario is

depicted in Figure 2.

III. VOIP BOT ARCHITECTURE

Our bot architecture is shown in Figure 3. The stack of dif-

ferent protocols provides the bot with an application interface

to use these protocols. The SIP stack is responsible for sending

and receiving, manufacturing and parsing SIP messages. The

RTP stack is responsible for coding and decoding, compressing

and expanding, encapsulation and demultiplexing of media

flows. Other stacks can be supported as well. For example,

the STUN [3] protocol is useful to bypass NAT.

The communication agent allows the bot to exchange

information and commands with the attacker. Most of the

known botnets use IRC (Internet Relay Chat - RFC 1459)

or peer-to-peer (P2P) networks for their control and command

architecture. IRC is mainly designed for group communication

and allows one-to-one communication (private discussion) as

well. A channel (or a room) is supported by multiple servers

building an application level spanning tree among them and

relaying IRC messages between room visitors. P2P refers to

a class of systems and applications that employ distributed

resources to perform a function in a decentralized manner

[4]. Bot masters moved towards P2P networks because of

their high degree of anonymity and privacy. For example in

Freenet [5], when a peer sends a message, the peer identity is

rewritten as the message is relayed among a chain of peers.

Another example is the Lucent Personalized Web Assistant

(LPWA) [6] which acts as a proxy server and allows consistent

untraceable aliases for clients from servers. A LPWA client

opens an account and is recognized upon returning to this

account while his true identity is hidden from the server. The

Slapper worm [7] which builds a P2P overlay network has

advanced features like reliable end to end message delivery,

coping with network partitions and reshaping, and anonymous

message delivery.

The data retrieval component allows the bot to retrieve

different kinds of data (e.g. list of VoIP extensions (URIs),

advertising audio files, list of default passwords to try, SIP

messages to shoot, etc ...) using a data communication proto-

col (e.g. FTP or HTTP Client). Web servers using a dynamic

DNS server (i.e. the DNS changes the IP corresponding to the

web server over time) are preferred to avoid being tracked.

The exploit retrieval component allows the bot to retrieve

specific exploits against vulnerabilities and software flaws in

VoIP products. The damage of such exploits ranges from

remote DoS on the target (similar to a ping of death) to remote

eavesdropping3. Cross script attacks and data base injection

vectors can be carried by malformed SIP messages to attack

embedded web servers in the targeted products and databases

querying theses messages for accounting and statistics. Some

exploits are stateless (consisting on shooting one SIP message)

but others are stateful (based on the state machine of the

target). Stateful attacks are formed by a series of messages

where the content and the sending time of each message

depends from the previous sent message and the corresponding

reaction or response of the target to that message. For example,

a stateful remote DoS on a Cisco 7940 SIP Phone4 has been

discovered using the KIF stateful fuzzer [8]. The bot master

uses some format to describe stateful exploits and upload them

to a server where they can be found by the bot. The bot parses

the exploit description and builds a local state machine to

perform the attack.

The encryption engine enables the bot to create digest

3http://www.voipsa.org/pipermail/voipsec_voipsa.

org/2007-August/002424.html
4http://www.voipsa.org/pipermail/voipsec_voipsa.

org/2007-August/002422.html

authentication from credentials when authentication is required

in the process of an attack or an attempt of registration.

Typical use of this engine is password cracking and CPU-

based flooding against the target’s authentication procedure.

The SIP state machine manages the operations of the bot

with respect to the commands issued by the attacker. The

mission of the bot as set by the attacker drives its behavior

upon occurrence of SIP events (i.e. receiving a SIP request

RequestEvent or a SIP response ResponseEvent) and

TimeOut events. The transition from a state to another is

constrained by predicates on a set of global and local variables.

For example, when receiving a 200 OK message that belongs

to some existing dialog, the bot’s next step is based on the

Cseq method (which determines the method the 200 OK is

in response for) and on the global attack parameters (mission,

target IP, target SIP port ...).

Based on this architecture, different attack scenarios are

possible as detailed in the next section.

IV. ATTACK SCENARIOS

SPIT

SPIT or SPAM over Internet Telephony refers to unsolicited

calls intended for advertising or social engineering. Automated

calls have already been used a couple of times like for example

in the 2008 American presidential election.5

In a SPIT scenario, the attacker asks the bot to deliver

an audio record to one or more destination URI. Similarly

to e-mails being used in SPAM, URIs can be collected by

web crawlers or in result to a VoIP domain enumeration. The

bot manufactures an INVITE request carrying an SDP body,

giving arguments like the destination URI, its IP address, its

RTP port, the codec to be used and other media attributes.

When the call is answered, the bot retrieves the audio record

from the location as supplied by the attacker (e.g. from a URL

or a local file in the compromised machine) and stream it to

the callee.

Flooding

Flooding attacks target the signaling plane elements (e.g.

proxy, gateway, etc.) with the objective to take them down

or to limit their quality, reliability and availability. Flooding

attacks can be categorized regarding their destination and their

strategy. Whether the attack is destined to a valid URI in the

target domain, a non existent URI in the target domain, a URI

with an invalid domain or IP address, an invalid URI in another

domain, or a valid URI in another domain, different damages

are produced. The strategy is related to the nature of messages

used during the attack: legitimate, malformed (carrying some

exploits), invalid (non compliant to the SIP standard), and

spoofed SIP messages (spoofed From and Contact header).

Other attacks are targeted against the authentication process

by using messages carrying valid nonces and requiring the

target to compute digests which overwhelm its CPU capacity

5http://edition.cnn.com/2008/POLITICS/10/23/robo.

calls/index.html

[9]. In a flooding scenario, the bot starts a thread which sends

continuously request messages (INVITE or REGISTER) given

the destination, the duration, the timing and the strategy as

supplied by the attacker. Distributed flooding attacks can be

easily organized by involving and synchronizing a number of

bots.

Enumeration

Enumeration is the process of discovering valid SIP ex-

tensions (or URIs) in a SIP domain. Enumeration is usually

preceded by a port scan to identify existent SIP proxies and

user agents. The standard port used by SIP is 5060. The first

step of enumeration is to identify if the SIP service is running

on that port and what type and version of server is there.

This is done by sending a simple OPTIONS message and

interpreting its response. The searched information is usually

found in the Server or the User-Agent header.

In an enumeration scenario, the bot retrieves a list of

extensions/URIs from a specified location, then it probes

them using INVITE, REGISTER or OPTIONS messages.

OPTIONS enumeration is preferable since it is stealthier (it

does not ring the phones, nor raise suspicions about the

registration process). The bot has to match each request

with the response it triggered based on the call-ID and/or

transaction identifier. It analyzes the response to determine 1)

if the dialed extension exists and is registered to the target, 2)

exists and is temporarily unavailable, or 3) doesn’t exist at all.

The interpretation of responses depends on the target’s type

and version. For example, if the target carries an OpenSER

sip proxy (version 1.1.1-notls) fingerprint, the

response to an OPTIONS message destined to an extension is

interpreted as follows: a “200 OK” means that the extension

exists and it is registered, a “404 NOT FOUND” means that

the extension is invalid, but a received “100 TRYING” before

a final error response means that the extension is valid but not

available for the moment.

Cracking

Remote brute force password cracking consists in repeatedly

trying guesses for an account’s password using INVITE or

REGISTER requests. Unchanged default passwords of de-

ployed VoIP platforms make them strongly vulnerable to such

attacks. In a cracking scenario, the bot has to discover the

registration or the voicemail password for a user name. Note

that the user name used in the authentication process is not

always the same as the one in the user’s URI (which can

be obtained by enumeration). The attacker has to know the

user name or the voice mail extension before going to a brute

force attack. The bot retrieves a list of default passwords

corresponding to the target platform. For each guess, it sends

a first REGISTER (or INVITE) asking for a challenge. An

error response from the target gives him back a nonce. The bot

calls its encryption engine to build a new request containing

credentials based on the challenge and the temporal nonce.

The target’s final response decides if the guess was right or

not.

Fingerprinting

Remote fingerprinting allows the attacker to identify the

type and the version of the SIP target platform. The simplest

method consists on sending an OPTIONS message and extrac-

tion of the manufacturer string from its response. This process

can be fooled if the manufacturer string was intentionally

falsified. Smarter fingerprinting schemes as described in [10]

or in [11] can be supported as well. In a fingerprinting

scenario, the bot is asked to fingerprint one or range of SIP

extensions. The bot has to send back its results to the attacker

or -in order to not disclose him- to put them in a specified

location where he can access them later.

Exploiting Specific Vulnerabilities

In an exploit attack scenario, the bot is either given the

platform of the target or has to discover it by itself (by

fingerprinting). The bot connects to an exploit server and

retrieves a set of possible exploits corresponding to the target

fingerprint. Each exploit should be tagged with some meta-data

so the bot can choose the exploit which meets the attacker’s

aim. In case of stateful attacks, the bot builds a local attack

state machine to execute the attack given local and remote

parameters as reported by the attacker.

Interception and Modification

These attacks require an access to the internal network in

the VoIP domain. If the attacker succeeds to compromise a

machine inside the VoIP domain, many interception, eaves-

dropping, modification and man in the middle attacks are

possible using ARP poisoning techniques. It is not just media

and signaling traffic which is targeted, but also supporting

protocols like DNS, DHCP, ICMP, and TFTP. In one scenario,

if the bot knows the IP address of a phone and the IP address

of the outbound SIP proxy, it can fool the phone into thinking

that it is the proxy (by sending an RTP packet with the

IP address of the proxy and the MAC address of the bot)

and vice versa. Like that, the bot plays an MITM role by

watching and forwarding messages between the two entities.

Because typically no data integrity is deployed in current SIP

implementations, the MITM can change an INVITE request

before forwarding it. For example, it can redirect the call

towards an IVR (Interaction Voice Response) to do Vishing

(VoIP Phishing) scam.

Fraudulent Calls

The increasing financial and informational value of VoIP

will attract more Internet hackers into attacking VoIP mid-

dlewares, take control over them and execute remote code.

Future scenarios are to ask the compromised phone to dial an

overtaxed number (similarly to the modem-based dialers in the

near past) or to record all calls. Terms like “VoIP dialer” or

“VoIP logger” are going to appear in the near future. A one

million dollar idea arises immediately: let a large number of

victims (one million) dial an overtaxed number resulting on

only one additional dollar on the monthly bill of each caller.

Most of the victims will not complain about.

Fig. 4. Screen view of the bot master

Propagation

Propagation models of worms exploiting VoIP and mobile

vulnerabilities and using directories in the compromised plat-

forms to spread up are discussed in [12]. By its fingerprinting,

exploit retrieving and executing capabilities, our bot consti-

tutes a basis for such a worm using an algorithm like the

following one:

Forall uri in PhoneBook

fingerprint = Bot.Fingerprint(uri);

exploit = Bot.

retrieve_exploit(fingerprint);

Bot.send_exploit (exploit, uri);

Bot.upload_version(uri);

End_Forall

V. IMPLEMENTATION AND EXPERIMENTS

We implemented a proof-of-concept worm-free IRC bot

based on SIP and RTP using the JAVA language. For SIP

we used the Jain SIP library [13]; for RTP we used the

JMF library[14] and for IRC we used the PircBot library6.

Our code is available under an open source license [15].

The bot is currently able to perform DoS, SPIT, SCAN,

CRAK, FINGEPRINT, SHOOT, EXPLOIT and REGISTER

functionalities. Moreover, the bot master is able to perform

a collective suicide of all the bots. The screenshot of Figure

4 shows the IRC client (Xchat7) of the bot master upon the

connection of one bot.

Deployed on an Intel Pentium 4 CPU 3.40GHz and 2G

RAM memory machine running a Linux kernel 2.6.18-1, the

6http://www.jibble.org/javadocs/pircbot/index.html
7http://www.xchat.org/

bot is able to send around 10,000 messages per second with

different call-Ids. The call-ID seed is the number of the bot

as set by the attacker. Messages from different bots have

different Call-Ids. We used a similar machine with 3G RAM

memory to be the target (hosting Asterisk and OpenSER8).

Using legitimate messages and non existent URI destination,

one bot is able to raise the target CPU to 100% in case of

both Asterisk and OpenSER, and 2 bots are able to saturate the

bandwidth of a LAN connection (about 12 MBytes/s). Asterisk

consumes 25% of the host system memory (i.e. 750 MB)

after 100 seconds of attack (i.e. 0.25% raise in memory/s),

while OpenSER memory consumption depends on the number

of child processes as configured by the administrator (Each

child reserves a 33 MB memory space). OpenSER integrates

a defense module against flooding attacks called PIKE. PIKE

blocks an IP address for a period p after receiving a number Th
coming from that address during a prefixed sampling period

s.

In order to perform a flooding against a PIKE-protected

OpenSER, a number of bots should be synchronized. The

first step is to discover the PIKE parameters. We propose the

scheme of Figures 5 and 6.

We need only 1+p/s bots to continuously deny the service

at the proxy. A first bot starts the attack and is blocked after

the first sampling period, the other p/s bots, each by turn,

assure the attack until the first bot is unblocked again. For

sake of simplicity, a scheme using only three bots is depicted

in Figure 7.

Several flooding mitigation mechanisms are currently pro-

posed ([16], [17], [18], [19]). However, our bots are able to

bypass such mechanisms at least from a theoretical point of

8The project has evolved in two parallel projects OpenSIPS and Kamailio

Fig. 5. Discovering the s Parameter

Fig. 6. Discovering the p Parameter

Fig. 7. Attacking a PIKE-protected system

view. Threshold-based systems can be deceived by fine-tuned

the flooding rates. Learning-based systems can be “poisoned”

by inserting specially crafted data points so that the model of

“normality” drifts into the direction of an attack vector [20].

VI. RELATED WORKS

Computer viruses and malwares [21] pose a serious threat

to the computer network infrastructures of our society. Logic

bombs, Trojan horses, backdoors, spywares and worms should

be studied for their different aspects to enhance our protection,

intrusion detection and prevention. With the emergence of

VoIP, many vulnerabilities have been discovered through secu-

rity testing of SIP implementations [22] that can be exploited

by such malwares.

Appropriate security approaches have been well investigated

to increase the immunity of this new technology. An early

warning system has been published in [23]. A holistic intrusion

detection solution based on event and alert correlation is

described in [24]. This paper uses a different approach since

it adopts the attacker’s perspective and therefore provides

an assessment tool to feedback currently deployed security

architectures.

A number of similar tools are already available9. SIPp10 is a

9http://www.voipsa.org/Resources/tools.php
10http://sipp.sourceforge.net/

SIP traffic generator providing basic call flow scenarios while

allowing more complex scenarios to be described using XML.

Sipsak11 is a command line tool that can be used for simple

SIP tests. C07-SIP12 is a byproduct of the PROTOS project

providing a group of tests against SIP parsers. SIPSendFun13

is a set of php scripts to send spoofed SIP messages. Skora14

wrote several Perl scripts demonstrating different attacks such

as BYE and CANCEL attacks. Our VoIP bot is novel with

respect to these tools because of its numerous functionalities

and the ability it gives to manage distributed attacks.

VII. CONCLUSION

In this paper, we presented a framework of VoIP-specific

malware using bots installed on compromised machines and

we showed how different attack scenarios can be supported by

such a framework. We presented a prototype implementation

that we experimented against VoIP servers and showed how

cooperating bots can be synchronized to bypass flooding

defense mechanisms. Future works include the investigation

of efficient and scalable defense mechanisms against VoIP

malwares and distributed denial of service attacks.

REFERENCES

[1] C.-M. Leung and Y.-Y. Chan, “Network forensic on encrypted peer-to-
peer voip traffics and the detection, blocking, and prioritization of Skype
traffics,” in WETICE ’07: Proceedings of the 16th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 401–408.

[2] A. Johnston, SIP: Understanding the Session Initiation Protocol, Second

Edition. Norwood, MA, USA: Artech House, Inc., 2003.
[3] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN – Simple

Traversal of User Datagram Protocol (UDP) through Network Address
Translators (NATs),” Internet Engineering Task Force: RFC 3489, March
2003.

[4] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja1, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer computing,” July 2003,
hPL-2002-57 (R1).

[5] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: a distributed
anonymous information storage and retrieval system,” in International

workshop on Designing privacy enhancing technologies. New York,
NY, USA: Springer-Verlag New York, Inc., 2001, pp. 46–66.

[6] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and A. Mayer,
“Consistent, yet anonymous, web access with LPWA,” Commun. ACM,
vol. 42, no. 2, pp. 42–47, 1999.

[7] I. Arce and E. Levy, “An analysis of the slapper worm,” IEEE Security

and Privacy, vol. 1, no. 1, pp. 82–87, 2003.
[8] H. J. Abdelnur, R. State, and O. Festor, “KiF: a stateful SIP fuzzer,”

in IPTComm ’07: Proceedings of the 1st international conference on

Principles, systems and applications of IP telecommunications. New
York, NY, USA: ACM, 2007, pp. 47–56.

[9] M. Luo, T. Peng, and C. Leckie, “CPU-based DoS attacks against SIP
servers,” in IEEE/IFIP Network Operations and Management Sympo-

sium (NOMS 2008). IEEE, April 2008.
[10] H. Yan, K. Sripanidkulchai, H. Zhang, Z.-Y. Shae, and D. Saha,

“Incorporating active fingerprinting into SPIT prevention systems,” in
Third annual security workshop (VSW’06). ACM Press, Jun 2006.

[11] H. Abdelnur, R. State, and O. Festor, “Advanced network fingerprinting,”
in RAID ’08: Proceedings of the 11th International Symposium on

Recent Advances in Intrusion Detection. London, UK: Springer-Verlag,
2008, pp. 311–330.

11http://sipsak.org/
12http://www.ee.oulu.fi/research/ouspg/protos/

testing/c07/sip/
13http://www.security-scans.de/index.php?where=ssf
14http://skora.net/voip/voip.html

[12] C. Fleizach, M. Liljenstam, P. Johansson, G. M. Voelker, and A. Mehes,
“Can you infect me now?: malware propagation in mobile phone
networks,” in WORM ’07: Proceedings of the 2007 ACM workshop on

Recurring malcode. New York, NY, USA: ACM, 2007, pp. 61–68.
[13] P. O’Doherty and M. Ranganathan, “JAIN SIP Tutorial: Serving

the developer community,” http://www-x.antd.nist.gov/proj/iptel/tutorial/
JAIN-SIP-Tutorialv2.pdf.

[14] “Java Media Framework API Guide,” SUN Microsystem, november
1999, http://java.sun.com/products/java-media/jmf/2.1.1/guide/index.
html.

[15] “The VoIP Bot project,” http://gforge.inria.fr/projects/voipbot/.
[16] B. Reynolds and D. Ghosal, “Secure IP Telephony using Multi-layered

Protection,” in Proceedings of The 10th Annual Network and Distributed

System Security Symposium, San Diego, CA, USA, feb 2003.
[17] E. Chen, “Detecting DoS attacks on SIP systems,” in Proceedings of

1st IEEE Workshop on VoIP Management and Security, San Diego, CA,
USA, apr 2006, pp. 53–58.

[18] S. Ehlert, C. Wang, T. Magedanz, and D. Sisalem, “Specification-based
denial-of-service detection for sip voice-over-ip networks,” icimp, vol. 0,
pp. 59–66, 2008.

[19] H. Sengar, H. Wang, D. Wijesekera, and S. Jajodia, “Detecting VoIP
Floods using the Hellinger Distance,” Transactions on Parallel and

Distributed Systems : Accepted for future publication, sep 2007.
[20] B. Nelson and A. D. Joseph, “Bounding an attack’s complexity for a

simple learning model,” in In the Proceedings of the First Workshop

on Tackling Computer Systems Problems with Machine Learning Tech-

niques (SysML), June 2006.
[21] J. Aycock, Computer Viruses and Malware (Advances in Information

Security). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.
[22] C. Wieser, M. Laakso, and H. Schulzrinne, “Security testing of sip

implementations,” Tech. Rep., 2003.
[23] M. Nassar, R. State, and O. Festor, “Voip honeypot architecture.” in

Integrated Network Management. IEEE, 2007, pp. 109–118.
[24] M. Nassar, S. Niccolini, R. State, and T. Ewald, “Holistic voip intrusion

detection and prevention system,” in IPTComm ’07: Proceedings of the

1st international conference on Principles, systems and applications of

IP telecommunications. New York, NY, USA: ACM, 2007, pp. 1–9.

