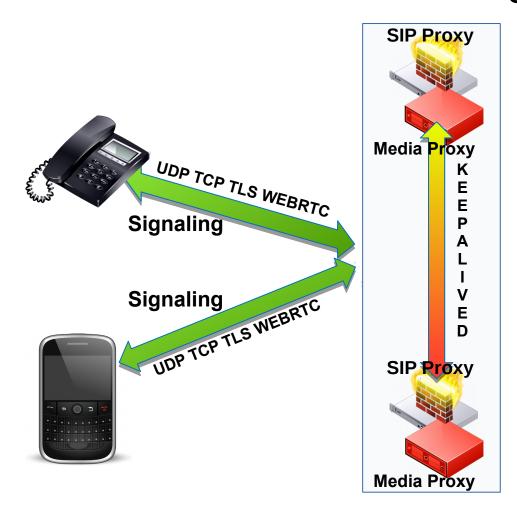

SCALING FreeSWITCH(es)

Beyond the single machine: special cases and differences between single domain and multi tenant

Giovanni Maruzzelli

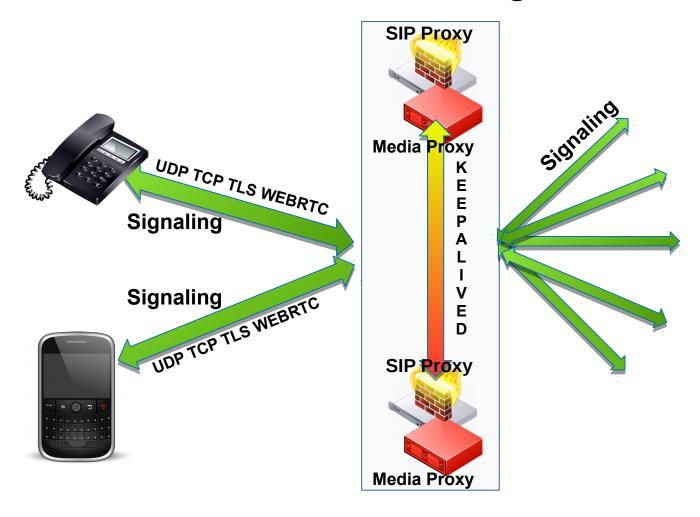
gmaruzz@OpenTelecom.IT


SIPScaling FreeSWITCHes

SIP and NAT

- Client is behind NAT, not directly reachable by server
- Client sends from its own IP:port a REGISTER request to Location Server IP:port, and in doing so it opens a pinhole in the NAT, waiting for server's answer
- NAT pinhole is only able to receive packets from same IP:port couple (Client/Server) it was open by, and for a limited period of time (30 seconds?)
- Location Server sends periodically from same IP:port an OPTIONS message to Client IP:port, Client answers, and in doing so it maintains the pinhole open
- When there is an incoming call for Client, Server sends the INVITE from same IP:port to Client IP:port

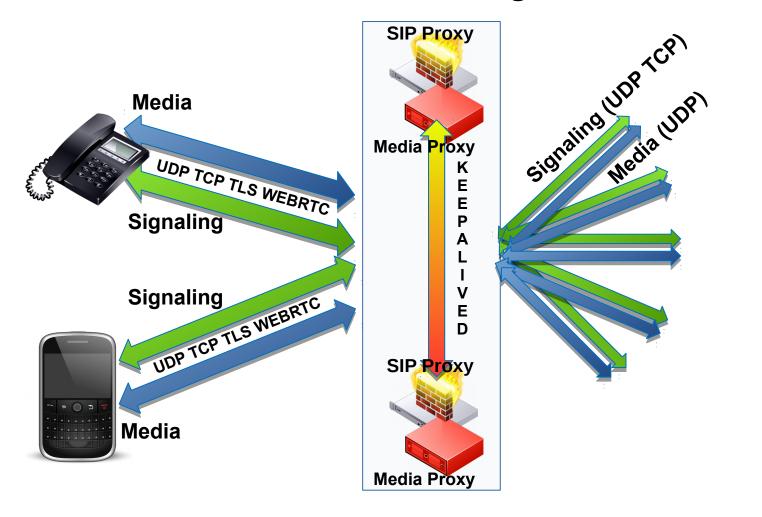
SIPLoad Balancing and Proxies


Where to put the SIP Registrar

- ON LB (SIP Proxy) MACHINE, directly interacting with Clients
 - REGISTER and NAT Keepalive (OPTIONS) are high volume, low load transactions
 - One robust box (in active-passive HA) will be able to serve tens of thousands clients
 - This is the most straightforward topology
- REGISTRATION is then Forwarded to FreeSWITCH MACHINES, load balanced by LB
 - FreeSWITCHes are made aware of registration (eg, where the phone is) created and deleted
 - No registration traffic, no NAT keepalive traffic

SIP Call Distribution: DISPATCHER & LOAD BALANCER

- SIP Proxy can be used for relaying requests to multiple boxes using "static" algorithms (eg: round robin or weighted) or "dynamic" algorithms (that take care of actual number of active calls on each machine)
- All proxy's algorithms are able to "ping" destinations, retry on failed destination, disable the failed box from list, and reenable it when is back in order


SIPLoad Balancing and Proxies

SIP Media Relaying

- SIP (signaling) proxy has nothing to do with media flow, it does not touch RTP
- It can modify SIP headers, and SDP bodies, so clients behind restrictive NATs will use a third party as a relay, and it can pass commands to that relay (eg: so the relay knows which client must be relayed to which)
- Original relay software is "Rtpproxy"
- More recent and advanced (eg: kernel space, etc):
 - MediaProxy
 - RtpEngine
- All of them can scale indefinitely

SIPLoad Balancing and Proxies

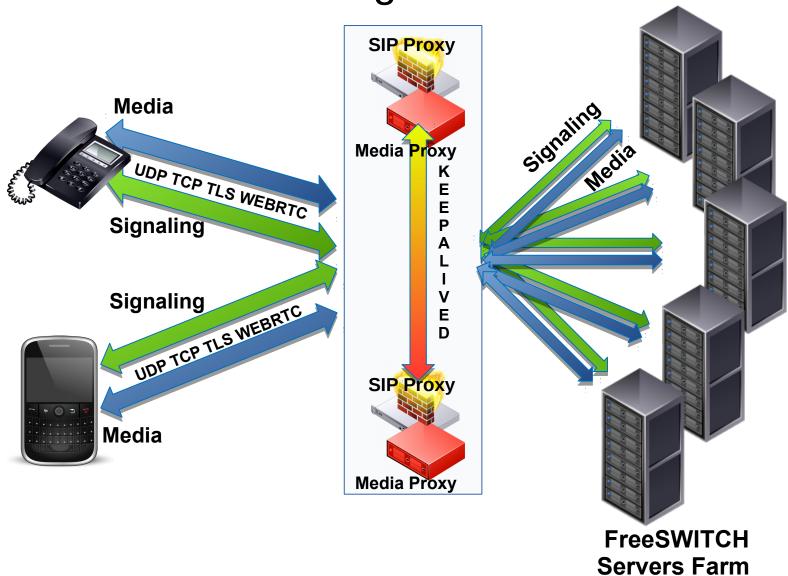

```
route {
        force rport();
        if (!\overline{d}s \text{ is in list}("\$si", "\$sp"))
            # SIP request packet client->backend
            if( !loose route() )
                if ( !ds_select_dst("1","0") )
                     send_reply("500","No Destination available");
                     exit;
            if (nat uac_test("19")) {
                if (method=="REGISTER") {
                     fix nated register();
                 } else {
                     fix nated contact();
            add path received();
        else
            # SIP request packet backend->client
            loose route();
        if (method=="INVITE") {
              rtpproxy engage("cw");
        record route();
        t relay();
onreply route {
        if (!ds is in list("$si", "$sp"))
            # SIP reply packet client->backend
            fix nated contact();
    return(1);
                                                                   163,1
                                                                                  Bot
```

Standard Calls (one to one, straightforward)

- Registered Phone to Registered Phone (eg "Internal Calls")
- Registered Phone to ITSP gw (eg "Outbound Calls")
- ITSP's to Registered Phone (eg "Inbound DID Calls")

Special Cases (must be managed)

- Load Balancing is predicated on a server farm of equivalent and equipollent (eg: interchangeable) servers
- There are cases for which this is not true:
 - Conferences
 - Call Queues
 - Call Park Unpark
 - Call/Group Pickup (Intercept)
 - And so on, and so on (quot. Zizek)


Conferences, Call Queues, Call Parks (must be local to one FS machine)

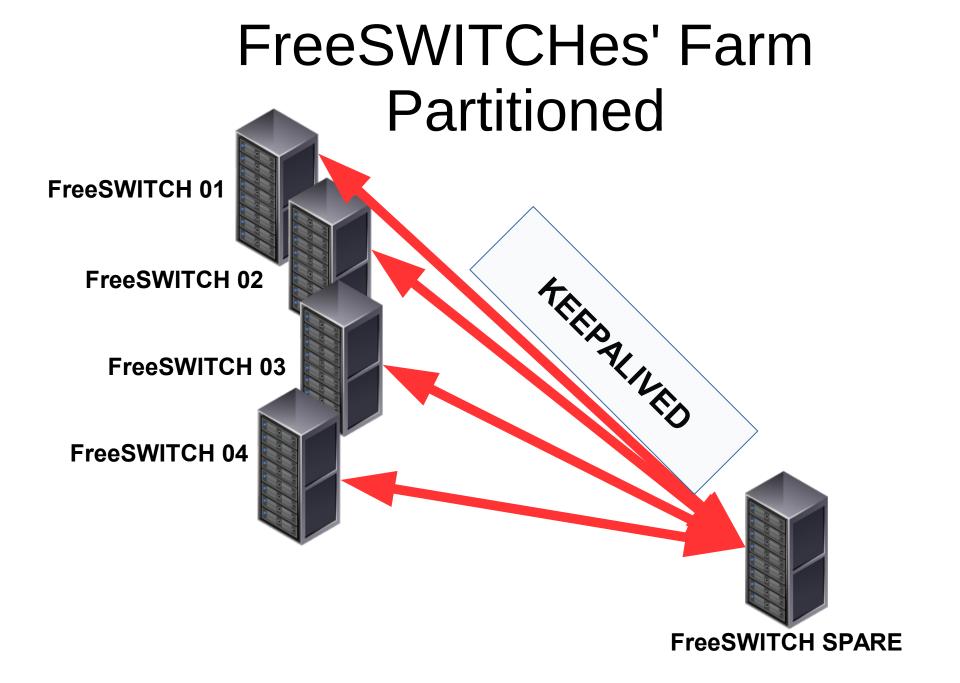
- Conferences are multiple calls' media streams switched or mixed together (think multitrack video/audio editing software), result stream is then broadcasted to all participants
- Call Queues are stacks of incoming live calls, all of them listening to Music on Hold, waiting to be dispatched to answering agents. It is possible to inject streams to single callers (eg "You are 3rd in line, your average waiting time is 9 minutes")
- Call Parks are named stalls where you put a call, and after a while you or someone else pick it up

Special Cases (hash on destination)

```
opensips.cfg (~) - VIM
                                                                         _ _ ×
       $var(destination) = "" + $rU;
       $var(port) = "5060";
       $var(destinationmd5) = $(var(destination){s.md5}{s.substr,0,1});
       $var(destinationmd5hex)="0x" + $var(destinationmd5);
       $var(destinationmd5int) = (int)$var(destinationmd5hex);
       $var(destinationmd5intmodulo) = $var(destinationmd5int) mod 3;
       switch ($var(destinationmd5intmodulo)) {
               case 0:
                       $du = "sip:192.168.1.117:" + $var(port) ;
                       break;
               case 1:
                       $du = "sip:192.168.1.116:" + $var(port) ;
               case 2:
                       $du = "sip:192.168.1.113:" + $var(port) ;
                       break;
               default:
                                                             3,0-1
                                                                           Top
```

SIPScaling FreeSWITCHes

Call/Group Pickups


- Someone answered a call, you are in his same group, he stares at you, you press *8 and pickup the call
- A call is ringing on a phone a desk away on your same group, you press *4EXT and answer the call
- Those two cases are to be managed at FreeSWITCH dialplan level, inserting into a DB table info on call groups' belonging

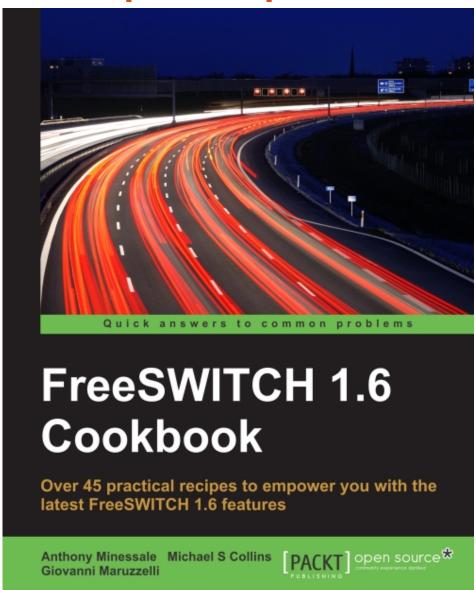
Special Cases (Multi Tenancy)

- Multi Tenant = Multiple SIP/WebRTC domains, managed independently
- Farm is partitioned on Domains by the Proxy, each domain goes to a particular machine
- This solves the conferencing-queues-transferpickup issues (eg locality of calls/users)
- High Availability by one or more SPARE machines, ready to take the role of the failed machine

Special Cases (hash on domain)

```
opensips.cfg + (~) - VIM
                                                                               _ 🗆 🗙
        $var(domain) = "" + $td;
       $var(port) = "5060";
        $var(domainmd5) = $(var(domain){s.md5}{s.substr,0,1});
        $var(domainmd5hex)="0x" + $var(domainmd5);
       $var(domainmd5int) = (int)$var(domainmd5hex);
$var(domainmd5intmodulo) = $var(domainmd5int) mod 3;
       switch ($var(domainmd5intmodulo)) {
                case 0:
                         $du = "sip:192.168.1.117:" + $var(port) ;
                         break;
                case 1:
                         $du = "sip:192.168.1.116:" + $var(port) ;
                case 2:
                         $du = "sip:192.168.1.113:" + $var(port) ;
                         break;
                default:
                                                                                 Top
                                                                  1,1
```


Signaling, Again (Presence, BLF, Messaging)


ALL PURE SIGNALING ARE BELONG TO SIP PROXY

- Presence
 - SUBSCRIBE PUBLISH NOTIFY
 - Event: State (Available, Busy, Do Not Disturb, Away)
- Blinking Field Lamp (BLF)
 - SUBSCRIBE PUBLISH NOTIFY
 - Event: Dialog (Idle, Ringing, Calling, in a call)
- Messaging
 - MESSAGE (SIMPLE)

OpenSIPSEnhancements

- Clustering Proxies
- Mid-Registar
- Balancing on FreeSWITCH Load

www.packtpub.com

www.packtpub.com

Thank You

QUESTIONS?

Giovanni Maruzzelli gmaruzz@OpenTelecom.IT